ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Congress passes new nuclear funding
On January 15, in an 82–14 vote, the U.S. Senate passed an Energy and Water Development appropriations bill to fund the U.S. Department of Energy for fiscal year 2026 as part of a broader package that also funded the U.S. Army Corps of Engineers and the U.S. Bureau of Reclamation.
Jiaqi Zhang, Akifumi Iwamoto, Keisuke Shigemori, Masanori Hara, Kohei Yamanoi
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 550-557
Research Article | doi.org/10.1080/15361055.2023.2197810
Articles are hosted by Taylor and Francis Online.
Fuel pellets made of a solid deuterium-tritium (D-T) mixture are supplied for inertial confinement fusion. Characterization of the D-T mixture is fundamental for the design and production of high-quality fuel pellets. However, during the phase transition, isotopologue fractionation may lead to fractional crystallization in the solid phase of the hydrogen isotopologue mixture. If this phenomenon occurs in solid D-T fuel, it will reduce the reaction efficiency of nuclear fusion. Currently, there is no effective observation method for fractional crystallization. This study aims to quantify the degree of fractional crystallization of the hydrogen isotopologues mixture in the solid phase using the refractive index measurement. For this method, refractive index information on the hydrogen isotopologues is necessary, therefore the temperature and wavelength dependences of the refractive index of hydrogen isotopologues need to be measured. Then, using the refractive index distribution of the solid D-T will show the composition distribution of isotopologues for assessing the fractional crystallization. Particularly, as far as we know, this is the first time that the measured values of the refractive index versus wavelength of solid D2 have been obtained. Understanding the wavelength dependence of the refractive index for the dispersion compensation allows for a wider application of the fractionated crystallographic observation method.