ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
D. Díaz Barrero, T. L. Le, S. Niemes, S. Welte, M. Schlösser, B. Bornschein, H. H. Telle
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 530-539
Research Article | doi.org/10.1080/15361055.2023.2194235
Articles are hosted by Taylor and Francis Online.
An unavoidable category of molecular species in large-scale tritium applications, such as nuclear fusion, are tritium-substituted hydrocarbons, which form by radiochemical reactions in the presence of (circulating) tritium and carbon (mainly from the steel of vessels and tubing). Tritium-substituted methane species, CQ4 (with Q = H,D,T), are often the precursor for higher-order reaction chains, and thus are of particular interest. Here we describe the controlled production of CQ4 carried out in the CAPER facility of the Tritium Laboratory Karlsruhe, exploiting catalytic reactions and species enrichment via the CAPER integral permeator. CQ4 was generated in substantial quantities (>1000 cm3 at ~850 mbar, with CQ4content of up to ~20%). The samples were analyzed using laser Raman and mass spectrometry to determine the relative isotopologue composition and to trace the generation of tritiated chain hydrocarbons.