ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
David Hillesheimer, Alexander Marsteller, Florian Priester, Marco Röllig, Michael Sturm, Stefan Welte, Johanna Wydra, Lutz Bornschein, Tobias Falke, Tobias Weber, Nancy Tuchscherer, Thanh-Long Le, Simon Niemes
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 465-471
Research Article | doi.org/10.1080/15361055.2023.2209691
Articles are hosted by Taylor and Francis Online.
The Karlsruhe Tritium Neutrino (KATRIN) experiment measures the tritium β-spectrum close to the maximum decay energy to achieve the value of the electron-antineutrino mass with a sensitivity of 0.2 eV/c2 (90% confidence level). Since only a small fraction of the decay electrons carries nearly all the energy, a high luminous tritium source, with its supporting infrastructure facilities, is necessary.
Since the start of the tritium operation of KATRIN back in May 2018, more than 600 days of 24/7 measuring campaigns with a total tritium throughput of ≈18.1 kg and a tritium concentration >95% have been conducted. Despite several technical issues occurring during the run time, the necessary reliable supply of tritium was provided. This contribution will give an overview of the current operational conditions of the Tritium Laboratory Karlsruhe tritium facilities involved, as well as the relevant technical, analytical, and administrative procedures implemented. Furthermore, an analysis will be given for system and component malfunctions in the tritium loop as well as the associated actions for problem-solving and repair. In addition, an end-of-life investigation for the component failure will be presented.