ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Alina Niculescu, Gheorghe Bulubașa, George Ana, Ciprian Bucur, Maria Crăciun, Anisia Bornea
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 416-421
Research Article | doi.org/10.1080/15361055.2023.2273043
Articles are hosted by Taylor and Francis Online.
A hydrogen generator is used in the combined electrolysis catalytic exchange process (CECE) for low-level tritiated water detritiation as a source of H2 (Q2) for the liquid-phase catalytic exchange column(s) within the process. To produce H2, the H2 generator employs an electrolytic process for H2O splitting into H2 and O2, resulting two streams: a hydrogen stream and an oxygen stream. During the detritiation of water, tritium is accumulated in the H2 generator in the form of tritiated water, and the effluent streams (hydrogen and oxygen) show in time an increased tritium concentration in the form of both tritiated water vapors and gas, which need to be recovered.
The traditional methods for recovery present a risk of explosion due to the high concentration of hydrogen in oxygen (above 3%, while the explosion limit is 1%). In order to minimize this risk, a microchannel reactor with platinated channels has been developed and tested for the oxidation of tritiated hydrogen from the O2 electrolyzer stream in view of its recovery in a scrubber column and returned as tritiated water to the process. The reactor has been coupled to an electrolyzer and tested with regard to the operating temperature. It has been found that it reaches the highest oxidation efficiency of hydrogen when operated at 200°C. The design of the equipment is presented together with the results of the tests done with the equipment integrated in the CECE process.