ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Carmen Varlam, Irina Vagner, Ionut Făurescu, Anisia Bornea, Denisa Făurescu, Diana Bogdan
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 391-398
Research Article | doi.org/10.1080/15361055.2023.2230413
Articles are hosted by Taylor and Francis Online.
The electrolysis process is essential in the water detritiation subsystem using the combined electrolytic catalytic exchange process. A special experimental program was designed to characterize a modified HOGEN H Series industrial electrolyzer. The tritium amount transferred to hydrogen gas, the water enrichment factor, and the number of hours necessary to attain a steady-state regime were parameters of primary interest in the experiments. To minimize the necessary time for a steady-state regime, the holdup of the water electrolyzer was chosen as the minimum value allowed for safe and constant parameter operation in all experiments. The stationary regime was attained after 120 h, with an enrichment factor near 5, and an amount of 18% to 19% of tritium transferred from tritium-enriched water to hydrogen gas. These parameters were obtained in all three experiments, and the modeling software of isotope separation by electrolysis confirmed the results.