ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Eduardo Iraola, José M. Nougués, Lluís Batet, Josep A. Feliu, Luis Sedano
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 374-390
Research Article | doi.org/10.1080/15361055.2023.2260238
Articles are hosted by Taylor and Francis Online.
Nuclear fusion depends on tritium breeding and self-sufficiency. Tritium represents a hazard due to its radioactivity and migration properties. Because of these difficulties, ITER, the largest fusion experiment so far, relies on a conservative static procedure to monitor the tritium inventory. Future commercial fusion plants can avoid operation halts if a dynamic monitoring strategy proves itself valid. Tritium plant models have been developed for this kind of monitoring and analysis task, but sensor accuracy and reliability are an issue still to be addressed, and the path to dynamic monitoring remains unclear. The present work shows the modeling procedure of the Tokamak Exhaust Processing system in a commercial simulator, Aspen HYSYS, to reproduce the inventories, streams, process conditions, and compositions of this subsystem during operation. The model is verified in a steady-state scenario using data from the available literature. A demonstration of such a tritium plant subsystem shows meaningful value for several reasons. First, this process has not been modeled before in commercial dynamic simulators, which are typically used in the process industry. It will also allow new stakeholders to participate in future fusion-related projects. Second, it will play a key role in industry-like tritium process monitoring, in which the new model will act as a digital twin of the plant. Data-driven diagnostics can be fueled by model data, helping engineers to generate additional data that could otherwise be expensive to get directly from the plant. For these reasons, models will represent an essential part of a dynamic monitoring system, necessary for feasible fusion projects.