ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Akira Taguchi, Haruka Hamashima, Takumi Nakamori, Yuki Yoneyama
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 359-364
Research Article | doi.org/10.1080/15361055.2023.2194239
Articles are hosted by Taylor and Francis Online.
We examine the hydrogen adsorption behavior of chabazite (CHA) and Linde Type A (LTA) zeolites, both of which possess an eight-membered ring (Si8O8), as the temperature was increased from 77 K (thermal adsorption spectroscopy). The CHA-type zeolites started to uptake hydrogen at around 200 K, whereas no other adsorbent showed any hydrogen uptake. The hydrogen adsorption temperature of CHA was similar to that observed by thermal desorption spectroscopy. A high D2/H2 separation ability at relatively high temperature in the CHA-type zeolites may be expected in the intrinsic adsorption property.