ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Akira Taguchi, Haruka Hamashima, Takumi Nakamori, Yuki Yoneyama
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 359-364
Research Article | doi.org/10.1080/15361055.2023.2194239
Articles are hosted by Taylor and Francis Online.
We examine the hydrogen adsorption behavior of chabazite (CHA) and Linde Type A (LTA) zeolites, both of which possess an eight-membered ring (Si8O8), as the temperature was increased from 77 K (thermal adsorption spectroscopy). The CHA-type zeolites started to uptake hydrogen at around 200 K, whereas no other adsorbent showed any hydrogen uptake. The hydrogen adsorption temperature of CHA was similar to that observed by thermal desorption spectroscopy. A high D2/H2 separation ability at relatively high temperature in the CHA-type zeolites may be expected in the intrinsic adsorption property.