ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
Musharaf Rabbani, Anthony Busigin, Haiqin Mao, Nisa Halsey, Dayna La Barbera
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 330-339
Research Article | doi.org/10.1080/15361055.2023.2232227
Articles are hosted by Taylor and Francis Online.
Tritium is used as a fuel in nuclear fusion, and water detritiation is an important part of the overall fusion fuel cycle. This paper compares two competing technologies for an ITER-scale water detritiation reactor, namely, the advanced water distillation (AWD) and combined electrolysis and catalytic exchange (CECE) processes. The processes are compared in terms of equipment size and footprint, energy demand, isotope separation characteristics, safety, and technology readiness level. An important technical concern discussed is management of deuterium accumulation since deuterium is enriched along with tritium and D-T separation is inherently more difficult than H-T separation. Interfacing with a downstream isotope separation system is also discussed.