ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Jaroslav Stoklasa, Jan Hrbek, Lucie Karásková Nenadálová, Bence Mészáros, Mykhaylo Paukov
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 311-320
Research Article | doi.org/10.1080/15361055.2023.2259227
Articles are hosted by Taylor and Francis Online.
This study evaluates the types of waste generated by tritium during nuclear fusion. Some methods of reprocessing and decontaminating solid waste using thermal processes are evaluated, and the advantages and disadvantages of different methods are compared. The high-temperature technology selected for this study is intended for use in the EU DEMO project in the area where waste from nuclear fusion reactions is processed. Safety and environmental concerns around the technology are evaluated. The potential for detritiation of solid wastes of various sizes are investigated. The study’s focus is on wastes comprising mostly tungsten dust grains of various sizes. The possibilities and rationale for the use of high-temperature technologies are investigated. Tests conducted focus primarily on tungsten waste in powder form in various atmospheres. Problems related to the induction heating and melting of metals and nonmetals are addressed.