ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Max Aker, Michael Sturm, Florian Priester, Simon Tirolf, Dominic Batzler, Robin Größle, Alexander Marsteller, Marco Röllig, Magnus Schlösser
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 303-310
Research Article | doi.org/10.1080/15361055.2023.2214695
Articles are hosted by Taylor and Francis Online.
The KArlsruhe TRItium Neutrino (KATRIN) collaboration aims to determine the neutrino mass with a sensitivity of 0.2 eV/c2 (90% confidence level). This will be achieved by probing the end-point region of the β-electron spectrum of gaseous tritium with an electrostatic spectrometer. A gold-coated stainless steel disk defines the reference potential for high-precision neutrino mass measurement, and it terminates the β-electron flux as the physical boundary of the tritium source. This so-called rear wall is exposed to tritium, which leads to adsorption and absorption. This in turn leads to systematic uncertainties for the neutrino mass measurements that need to be understood and mitigated. In maintenance phases, during which the gaseous tritium source was emptied (<10−5 of nominal gas density), the activity that accumulated on the rear wall during normal operation was monitored using beta-induced X-ray spectrometry (BIXS) and direct observation of emitted β electrons with a silicon detector. Dependency of the observed activity increase on the integral tritium throughput was investigated and found to converge from limited exponential growth to continuous linear growth. This paper gives an overview of the results that were obtained using several methods of in situ decontamination of the rear wall while continuously monitoring the activity. The decontamination methods included heating during continuous evacuation; flushing the system with nitrogen, deuterium, or air with residual humidity at different pressures; and illumination of the rear wall with ultraviolet (UV) light. These well-known methods led to only a small (15%) decrease in the observed activity. However, a decrease of the surface activity by three orders of magnitude in less than 1 week was achieved by combination of different methods using UV light, a heated surface, and a low (5 to 100 mbar) pressure of air inside the chamber, leading to the production of highly reactive ozone. This proved to be by far the most efficient method, drastically reducing the contribution of the rear wall surface activity to the β spectrum of the gaseous source.