ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Jérôme Bucalossi, Tore Supra Team
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 184-191
Technical Paper | Stellarators | doi.org/10.13182/FST04-A554
Articles are hosted by Taylor and Francis Online.
During winter 2001-2002, the Tore Supra tokamak went through a major upgrade to provide a heat extraction capability of 25 MW in steady state (composants internes et limiteur project). In the new configuration, the operational domain has experienced a rapid extension. Indeed, discharges of more than 4 min have been performed with a world-record-breaking discharge accounting for 0.75 GJ of injected/extracted energy. Stationary discharges with fully noninductively driven current are performed routinely (typical parameters: plasma current, 0.52 MA; toroidal magnetic field, 4 T; lower hybrid power, ~3 MW, electron line density, 2.5 × 1019 m-2), limited in duration by the original lower hybrid current drive (LHCD) system. Ion cyclotron waves [ion cyclotron resonance heating (ICRH)] have been coupled to plasma for 1 min in combination with LHCD in a higher-density scenario (Greenwald fraction of 0.8, 0.11 GJ of injected ICRH power for 0.42 GJ total injected power) and with a substantial fraction of bootstrap current (15 to 20%). Electron cyclotron current drive experiments are also carried out: A new world record of electron cyclotron injected energy has been established in a single electron cyclotron resonance heating pulse of 32 s (25 MJ). In these discharges, stable central electron temperature oscillations sometimes appear, probably due to the interplay between heat transport and current drive. Density profile peaking is observed despite the absence of toroidal electric field, suggesting the existence of a turbulent inward pinch. Finally, particle balance analyses indicate that the in-vessel deuterium inventory never reaches saturation. Many carbon deposits and flakes have been found in the inner vessel, possibly playing a role in the fuel retention.