ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Francesca Papa, Alessandro Venturini, Marco Utili, Gianfranco Caruso, Alessandro Tassone, Mariano Tarantino
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 260-265
Research Article | doi.org/10.1080/15361055.2023.2245283
Articles are hosted by Taylor and Francis Online.
Antipermeation and anticorrosion coatings are being developed to reduce tritium permeation from liquid metal [LiPb of the water-cooled lithium-lead breeding blanket and Pb for lead-cooled fast reactors (LFRs)] to primary heat transfer systems. The facility APRIL (Alumina-coating for tritium Permeation Reduction for Innovative LFR) was designed and installed at ENEA Brasimone R.C. to characterize the permeation reduction factor (PRF) of the candidate coatings in static conditions.
In the current configuration, APRIL is composed of three pipes, closed at one end, that simulate the heat exchangers of the ALFRED LFR. Two of the pipes are coated with 3 µm of alumina with pulsed laser deposition techniques, the reference method for a fission reactor. The third pipe is uncoated. During the tests, all the pipes are filled with pressurized steam at 100 bar and 480°C, the steam generator condition of the ALFRED LFR. The tests are made in the gas phase; indeed, the three pipes are installed in a chamber filled with helium with a known concentration of deuterium that simulates tritium. Deuterium permeates inside the pipes, allowing for the evaluation of the PRF by means of the ratio between the measured permeated flux in the uncoated pipe and in the coated ones. A first test with 0.5% of deuterium was carried out and the evaluated PRF was about 13.5.