ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Akio Komori, Tomohiro Morisaki, Suguru Masuzaki, Mamoru Shoji, Nobuyoshi Ohyabu, Hiroshi Yamada, Kenji Tanaka, Kazuo Kawahata, Kazumichi Narihara, Shigeru Morita, Byron Jay Peterson, Ryuichi Sakamoto, Satoru Sakakibara, Osamu Motojima, LHD Experimental Group, Hajime Suzuki
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 167-174
Technical Paper | Stellarators | doi.org/10.13182/FST04-A552
Articles are hosted by Taylor and Francis Online.
A local island divertor (LID) experiment has begun in the Large Helical Device (LHD) to demonstrate improved plasma confinement, and fundamental LID functions were demonstrated in the sixth experimental campaign in 2002-2003. It was clearly shown that when an m/n = 1/1 island is generated by adding a resonant perturbation field to the LHD magnetic configuration, the particle flow is guided along the island separatrix to the backside of the island, where carbon plates are located on a divertor head. The particles recycled there are pumped out efficiently so that the line-averaged core plasma density is reduced by a factor of ~2 at the same gas puff rate, compared with non-LID discharges. Obvious improvement of the global plasma confinement was, however, not observed yet, because the discharge could not be optimized, due to a large amount of outgas from the divertor head to the core plasma. The size of the divertor head was found to be larger than the optimum one; hence, the core plasma impacted slightly on the core plasma-facing portion of the divertor head with which the core plasma was not expected to collide.