ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ruihuan Li, Bo Zhang, Dan Sun, Xiaoxiao Cao, Jijun Zhao
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 244-252
Research Article | doi.org/10.1080/15361055.2023.2223744
Articles are hosted by Taylor and Francis Online.
In order to characterize the behaviors of interstitial oxygen (O) in the vanadium (V) alloy, the interactions between O and Ti with respect to atomic separation distance have been investigated using first-principles calculations. We observe an attractive interaction between Ti and O within the third nearest neighbor (nn) (3nn) distance. The stability of the Ti-vacancy (Ti-Va) clusters has been studied by calculating the binding energy between Ti and monovacancy in the vanadium alloy, and our results show that the stable configurations are Ti1Va1, Ti2Va1, and Ti4Va1 clusters. The TinVa1 clusters prefer to trap two O atoms and form stable Ti1O2Va1, Ti2O2Va1, and Ti4O2Va1 clusters. Furthermore, the self-trapping energies of the Hex clusters by the TinO2Va1 clusters have been calculated. When four He atoms are trapped, the Hex clusters are stable. Furthermore, the trapping energies for the multiple He atoms captured by the TinO2Va1 clusters are calculated, and the TinO2 clusters are found to impede the vacancy trapping of He atoms to form He bubbles.