ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Gopi Krishna C, M. J. Quamar, N. Kishore Babu, Sarath Kumar G V, Bharath Bandi, M. K. Talari
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 215-229
Research Article | doi.org/10.1080/15361055.2023.2219830
Articles are hosted by Taylor and Francis Online.
This study investigates the microstructure and mechanical properties of DP780 steel that has been tungsten inert gas welded and post weld heat treated. Microscopy studies revealed that the weldment’s microstructure varied from martensite in the fusion zone to a mixture of martensite and ferrite in the heat affected zone (HAZ). This heterogeneity in the microstructure resulted in the formation of hardened and softened zones in the cross section of the weldment. The DP780 as-welded joint exhibited lower strength and ductility [yield strength (YS): 492 ± 5 MPa, ultimate tensile strength (UTS): 668 ± 8 MPa, and percent elongation (%El): 8 ± 1] compared to the base metal (BM) (YS: 538 ± 2 MPa, UTS: 794 ± 5 MPa, and %El: 27 ± 2) due to strain localization in the subcritical HAZ. The weldments subjected to post weld heat treatment (PWHT) at 500°C exhibited lower strength and higher ductility (YS: 471 ± 3 MPa, UTS: 624 ± 5 MPa, and %El: 13 ± 1) than the weldments subjected to PWHT at other conditions: 300°C (YS: 501 ± 7MPa, UTS: 658 ± 6 MPa, and %El: 9 ± 1) and 400°C (YS: 492 ± 3 MPa, UTS: 649 ± 5 MPa, and %El: 11 ± 1). The decrease in strength and ductility after PWHT can be attributed to the tempering of martensite present in the weldment. Erichsen cupping tests indicated a reduction in the formability of the as-welded joint due to the presence of a softened zone. While a significant increase in formability is observed in the weldments subjected to PWHT with an increase in temperature, the formability is still inferior to that of the BM due to the inhomogeneity in the microstructures across the weldment.