ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Yan Qizhen, Zhaochun Zhang, Guo Haibo, Wang Yang
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 178-195
Research Article | doi.org/10.1080/15361055.2023.2213811
Articles are hosted by Taylor and Francis Online.
Tungsten/graphene composite was developed and demonstrated to have good mechanical and thermal properties. Density functional theory calculations were performed to investigate elastic constants, elastic anisotropies and isotropic elastic moduli, thermodynamic properties and minimum thermal conductivity of tungsten/graphene with and without a helium-vacancy pair, and tungsten/graphane and tungsten/ditungsten carbide (tungsten/W2C) composites. The results show that tungsten/graphene composite has more toughness when compared with pure tungsten metal. It is noticed that the minimum thermal conductivity of tungsten/graphene composite is higher, introducing a potential application in heat dissipation at high temperatures. We give an honest appraisal of the anisotropic and isotropic (polycrystalline) elastic properties of tungsten/graphene, tungsten/graphane, and tungsten/W2C carbide composites. In addition, the results show that the graphene layer is a strong trap for the He atom, while He affinity to the graphene layer is weaker to a single vacancy. The formation of the He-vacancy pair due to trapping effects near the W/graphene interface will help to reduce the concentration of impurities and defects in the tungsten matrix and maintain the inherent heat dissipation properties under irradiation.