ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
M. Yiğit, A. Kara, A. Yilmaz
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 156-165
Research Article | doi.org/10.1080/15361055.2023.2211190
Articles are hosted by Taylor and Francis Online.
Niobium is an important alloying material in nuclear reactors because of its enormous strength, low density, low neutron absorption, and high melting point. This study is structured on nuclear data calculations that are based on a Monte Carlo simulation approach. The GEANT4, SRIM, and TALYS codes were used to create a comprehensive simulation of 3.6-MeV alphas and 14.7-MeV protons on a target. We present calculation results on nuclear parameters as ion energy losses, displacements, vacancies, projected ranges, and cross sections. A comparison between the GEANT4 and SRIM codes was made for the projected ranges and ion energy losses. Besides, the calculations of cross sections in the TALYS code were carried out using level densities on the Skyrme energy density functional and the Fermi gas model.