ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
M. Yiğit, A. Kara, A. Yilmaz
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 156-165
Research Article | doi.org/10.1080/15361055.2023.2211190
Articles are hosted by Taylor and Francis Online.
Niobium is an important alloying material in nuclear reactors because of its enormous strength, low density, low neutron absorption, and high melting point. This study is structured on nuclear data calculations that are based on a Monte Carlo simulation approach. The GEANT4, SRIM, and TALYS codes were used to create a comprehensive simulation of 3.6-MeV alphas and 14.7-MeV protons on a target. We present calculation results on nuclear parameters as ion energy losses, displacements, vacancies, projected ranges, and cross sections. A comparison between the GEANT4 and SRIM codes was made for the projected ranges and ion energy losses. Besides, the calculations of cross sections in the TALYS code were carried out using level densities on the Skyrme energy density functional and the Fermi gas model.