ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
M. Yiğit, A. Kara, A. Yilmaz
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 156-165
Research Article | doi.org/10.1080/15361055.2023.2211190
Articles are hosted by Taylor and Francis Online.
Niobium is an important alloying material in nuclear reactors because of its enormous strength, low density, low neutron absorption, and high melting point. This study is structured on nuclear data calculations that are based on a Monte Carlo simulation approach. The GEANT4, SRIM, and TALYS codes were used to create a comprehensive simulation of 3.6-MeV alphas and 14.7-MeV protons on a target. We present calculation results on nuclear parameters as ion energy losses, displacements, vacancies, projected ranges, and cross sections. A comparison between the GEANT4 and SRIM codes was made for the projected ranges and ion energy losses. Besides, the calculations of cross sections in the TALYS code were carried out using level densities on the Skyrme energy density functional and the Fermi gas model.