ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Kori D. McDonald, Collin Malone, Josh J. Cooper, Anthony B. Thompson, George K. Larsen
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 137-142
Research Article | doi.org/10.1080/15361055.2023.2209048
Articles are hosted by Taylor and Francis Online.
By leveraging the large isotope effect in the palladium hydrogen isotope system, the Thermal Cycling Absorption Process (TCAP) provides an efficient and advantageous means to separate protium, deuterium, and tritium. To meet increased future tritium processing demands, such as those needed for fusion power plants, current designs of the separation columns need to be adapted and optimized using the progress made in understanding hydrogen isotope science. One key to this optimization lies in understanding the baseline performance for currently employed separation packing materials. Pd/k and molecular sieves, as commonly used for the separation of hydrogen isotopes, are herein evaluated to establish a baseline for their separation efficiency. Van Deemter plots are formulated, and the influence of each parameter is evaluated to determine areas for improvement.