ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Jochen Max Linke, Takeshi Hirai, Manfred Rödig, Lorenz Anton Singheiser
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 142-151
Technical Paper | Stellarators | doi.org/10.13182/FST04-A550
Articles are hosted by Taylor and Francis Online.
Beside quasi-stationary plasma operation, short transient thermal pulses with deposited energy densities on the order of several tens of MJ/m2 are a serious concern for next-step devices, in particular, for tokamak devices such as ITER. The most serious of these transient events are plasma disruptions. Here, a considerable fraction of the plasma energy is deposited on a localized surface area in the divertor strike zone region. The timescale of these events is typically on the order of 1 ms. In spite of the fact that a dense cloud of ablation vapor will form above the strike zone, only partial shielding of the divertor armor from incident plasma particles will occur. As a consequence, thermal shock-induced crack formation, vaporization, surface melting, melt layer ejection, and particle emission induced by brittle destruction processes will limit the lifetime of the components. In addition, dust particles (neutron-activated metals or tritium-enriched carbon) are a serious concern from a safety point of view.Other transient heat loads that occasionally occur in magnetic confinement experiments such as instabilities in the plasma positioning (vertical displacement events) also may cause irreversible damage to plasma-facing components (PFCs), particularly to metals such as beryllium and tungsten. Other serious damage to PFCs is due to intense fluxes of 14-MeV neutrons in D-T burning plasma devices. Integrated neutron fluence of several tens of displacements per atom in future thermonuclear fusion reactors will degrade essential physical properties of the components (e.g., thermal conductivity). Another serious concern is the embrittlement of the heat sink and the plasma-facing materials (PFMs).To investigate the performance of carbon-based and metallic PFMs under the aforementioned thermal loads, simulation experiments have been performed in highly specialized high-heat-flux test facilities. The neutron-induced degradation of materials and components was investigated on selected test samples that were irradiated in high-flux material test reactors.