ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Xiyang Zhang, Tiejun Xu, Lei Yin, Nanyu Mou, Yan Wang, Damao Yao
Fusion Science and Technology | Volume 80 | Number 1 | January 2024 | Pages 98-107
Research Article | doi.org/10.1080/15361055.2023.2198482
Articles are hosted by Taylor and Francis Online.
The China Fusion Engineering Test Reactor (CFETR) is a device developed to verify the engineering feasibility of a fusion reactor. For CFETR, the divertor is an important plasma-facing component, whose main function is to exclude impurities and remove plasma heat. In addition, the requirement for remote handling (RH) maintenance must be satisfied because of the level of radioactivity in the vacuum vessel after shutdown. The dome is an important component of the divertor, whose main function is to isolate impurity particles as well as to improve the ability of excluding particles. In the optional dome design, a hybrid divertor-blanket concept, a front-face RH compatible structure in plasma-facing units (PFUs), and a RH maintenance scheme for the main bolt are proposed. The vulnerable targets can be replaced directly and thus reduce the RH maintenance time. The dome needs to withstand the heat flux of 10 MW/m2 and nuclear heat in the condition of 1.5 GW of fusion power in the engineering design requirements. Because of the RH compatible structure, higher requirements are demanded for the design of the dome cooling system. In this study, the cooling system and the customized heat transfer structure of dome PFUs are designed to guarantee the maximum heat removal level. The steady-state thermal analysis shows that the cooling system fulfills the design requirements. The concept of the hybrid divertor-blanket and the front-face RH compatible structure for the divertor target have certain reference significance and value for the engineering design and RH maintenance research for the fusion reactor divertor in the future.