ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Vamsi Krishna K, Gopi Krishna C, Nagendra Polamarasetty, Mahesh Kumar Talari, Vijay N. Nadakuduru, Kishore Babu Nagumothu
Fusion Science and Technology | Volume 80 | Number 1 | January 2024 | Pages 82-97
Research Article | doi.org/10.1080/15361055.2023.2200523
Articles are hosted by Taylor and Francis Online.
In the present study, the microstructural and mechanical properties of Ti-15V-3Cr-3Al-3Sn (Ti-1533) and Ti-6Al-4V (Ti-64) electron beam welds have been studied. Optical microscopy investigations revealed the presence of three different zones, namely, the fusion zone (FZ), the heat-affected zone (HAZ), and the base metal (BM). In Ti-1533 weld, the BM comprises equiaxed β grains while the FZ consists of large columnar β grains. Further, the HAZ constitutes coarse equiaxed β grains near the FZ. However, in the case of Ti-64 weld, the BM comprises a slightly elongated α phase and transformed β phase while the FZ consists of an acicular martensitic phase. Welds prepared with Ti-1533 exhibit a lower ultimate tensile strength (UTS) of 726 ± 5 MPa, yield strength (YS) of 702 ± 5 MPa, and % elongation (%El) of 12 compared to its BM (YS: 738 ± 5 MPa; UTS: 778 ± 5 MPa; %El: 15). The lower strength in Ti-1533 weld is due to the presence of coarse columnar β grains in the FZ while Ti-64 weld exhibits superior tensile properties (UTS: 993 ± 5 MPa; YS: 959 ± 4 MPa; %El: 9) compared to its BM (UTS: 910 ± 5 MPa; YS: 856 ± 5 MPa; %El: 14). The higher strength for Ti-64 weld could be attributed to the formation of acicular martensitic α′ in the FZ. However, Ti-64 welds subjected to postweld heat treatment (PWHT) showed a decrease in strength (UTS: 922 ± 4 MPa; YS: 858 ± 4; %El: 12) compared to as-welded Ti-64 welds. This is attributed to the formation of the diffusional product α+β phase in the FZ. In contrast, Ti-1533 welds subjected to PWHT showed a rapid increase in tensile property (UTS: 1224 ± 6MPa; YS: 1205 ± 8; %El: 9) values and hardness (380 HV) values compared to as-welded Ti-1533 welds. This increase in strength after PWHT is due to uniform precipitation of alpha particles in the β matrix, which was evidenced by transmission electron microscope results.