ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Benjamin Ruiz-Yi, Lucas M. Angelette, Paul R. Beaumont
Fusion Science and Technology | Volume 80 | Number 1 | January 2024 | Pages 48-54
Research Article | doi.org/10.1080/15361055.2023.2196238
Articles are hosted by Taylor and Francis Online.
The separation of tritiated sources from the exhaust stream of a nuclear fusion system remains a key area of study. While current hydrogen isotope separation technologies are effective at separating gaseous elemental hydrogen, they require additional costly and time-intensive electrolysis steps to be applied toward tritiated water. Previous work has proposed a capture and exchange method, which this work has applied to screen for an optimal weight loading of platinum onto a zeolite molecular sieve. Several samples of various weight loadings were cycled using a series of isotope exchange processes, and it was determined that a weight loading between 0.65 to 0.80 wt% Pt is optimal to separate heavier isotopes of hydrogen from a water waste stream.