ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
U. Shumlak, E. T. Meier, B. J. Levitt
Fusion Science and Technology | Volume 80 | Number 1 | January 2024 | Pages 1-16
Research Article | doi.org/10.1080/15361055.2023.2198049
Articles are hosted by Taylor and Francis Online.
Fusion gain and triple product are derived for the sheared-flow-stabilized (SFS) Z pinch by including the input power associated with driving the plasma flow and the additional advective loss of thermal energy. Plasma impurities contribute to radiative power losses and to thermal power losses by increasing the electron population. The presence of impurities increases the required plasma parameters, characterized by the triple product, to achieve fusion gain. The analysis is applied to deuterium-tritium (D-T) fusion, though the methodology can be extended to other reactions. Since D-T fusion produces an alpha particle, the possibility exists of magnetically confining the alpha with sufficiently high magnetic fields, which are self-generated by the plasma pinch current. Confined alpha particles can heat the D-T fusion fuel, reduce the needed input power, and thereby amplify the fusion gain. However, ignition () does not occur since the axial plasma flow must be externally driven. The impacts of alpha heating and impurity losses are considered on the fusion performance of the SFS Z pinch. Requirements, assumptions, and limitations are described that would justify a determination of “D-T equivalent conditions” in a D-D plasma. A minimum set of experimental measurements of plasma parameters is specified that can be compared to a plasma parameter map to facilitate a “” claim, where is defined by instantaneous values of fusion power and input power. Corroborating measurements are also discussed that would further support extrapolation of plasma and fusion performance to D-T operation.