ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Rainer Burhenn, Jürgen Baldzuhn, Rudolf Brakel, Hartmut Ehmler, Louis Giannone, Peter Eckhard Grigull, Jens Knauer, Maciej Krychowiak, Matthias Hirsch, Katsumi Ida, Henning Maassberg, Gerald Kent McCormick, Ekkehard Pasch, Henning Thomsen, Arthur Weller, W7-AS Team, ERCH Group, NI Group
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 115-128
Technical Paper | Stellarators | doi.org/10.13182/FST04-A547
Articles are hosted by Taylor and Francis Online.
The dependence of impurity transport on plasma parameters in the modular stellarator Wendelstein 7-AS was investigated by means of a laser blow-off technique. An increased impurity transport at higher heating power and lower magnetic field strength as well as no effect of the isotope composition on the impurity confinement was observed. The most critical scaling with respect to stationary operation at high density is the improved confinement of impurities at high densities, leading to a degradation of plasma energy by increasing radiation and to a loss of density control. This was attributed to a reduction of the impurity diffusion coefficient with density. After installation of island divertor modules, a transition from normal confinement into the high-density H-mode (HDH) at a certain power-dependent threshold density appeared. This transition is characterized by a strong reduction of the impurity confinement time and an increase in energy confinement time. In the HDH operational regime, access to even higher densities (4 × 1020 m-3) than achieved before became possible under stationary operation conditions. Impurity transport measurements and model predictions indicate that the reduction of the impurity confinement in HDH is caused by not only a reduction of the inward convection in the core plasma but also possibly by changes in the edge transport. Comparison of experimental data with an axisymmetric transport model should elucidate the role of stellarator-specific transport aspects.