ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Y. Takeiri, S. Kubo, T. Shimozuma, M. Yokoyama, M. Osakabe, K. Ikeda, K. Tsumori, Y. Oka, K. Nagaoka, Y. Yoshimura, K. Ida, H. Funaba, S. Murakami, K. Tanaka, B. J. Peterson, I. Yamada, N. Ohyabu, K. Ohkubo, O. Kaneko, A. Komori, LHD Experimental Group
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 106-114
Technical Paper | Stellarators | doi.org/10.13182/FST04-A546
Articles are hosted by Taylor and Francis Online.
The electron internal transport barrier (ITB) is formed with centrally focused electron cyclotron resonance heating superposed on plasmas heated by neutral beam injection in the Large Helical Device. The electron transport is investigated for the electron ITB plasmas observed in various magnetic axis positions of Rax = 3.6, 3.75, and 3.9 m, and it turns out that the core electron transport is reduced with suppression of the anomalous transport in all three magnetic axis positions. In the theoretical calculations, positive radial electric fields are generated in the improved transport region, implying that the electron ITB formation is correlated with the neoclassical electron root. At an outer-shifted configuration of Rax = 3.9 m, where the helical ripple is large, the thermal diffusivity is decreased with decreasing collisionality, suggesting the reduction of the ripple transport by the radial electric field. The temperature and density conditions for the ITB formation are consistent with the theoretical density dependence of the transition temperature to the neoclassical electron root from the ion root.