ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Thomas F. Fuerst, Matthew D. Eklund, John A. Leland, Adriaan A. Riet, Chase N. Taylor
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1224-1234
Research Article | doi.org/10.1080/15361055.2023.2196237
Articles are hosted by Taylor and Francis Online.
Tritium breeding is a critical component of any self-sustaining future fusion reactor. The liquid-metal eutectic PbLi is of particular interest as a tritium breeder material due to its favorable thermophysical and neutronic properties. One of the several remaining challenges facing PbLi breeder blankets is the need to design and validate a highly efficient tritium extraction system. The vacuum permeator is a promising extraction concept that utilizes tritium permeation through a highly permeable metal membrane. The Tritium Extraction eXperiment (TEX) is a forced-convection PbLi loop constructed to investigate tritium extraction from PbLi with vacuum permeators. Accurate thermal-hydraulic and tritium transport models are required to establish appropriate test matrices, predict experiment outcomes, and analyze data. However, the hydrogen transport properties of PbLi and permeator materials have large uncertainties. A database is collected and a parametric analysis is conducted on the effect of hydrogen transport material properties, including diffusivity of H in PbLi and the permeator, solubility of H in PbLi and the permeator, and the permeator surface recombination constant, on the expected tritium extraction efficiency for a vacuum permeator installed in TEX. Herein, we observe that the solubility of H in PbLi and the permeator and the recombination constant of the permeator have the largest effect on extraction efficiency.