ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Jonas C. Schwenzer, Alessia Santucci, Christian Day
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1208-1218
Research Article | doi.org/10.1080/15361055.2023.2189550
Articles are hosted by Taylor and Francis Online.
The Helium Cooled Pebble Bed breeding blanket of the EU-DEMO foresees continuous processing of a small fraction of the helium coolant in the coolant purification system (CPS) to counteract buildup of tritium and impurities. For this system, two different process variants are currently considered. The first is based on the conversion of all hydrogen species into water using copper oxide beds and the subsequent water adsorption over zeolite molecular sieve (ZMS) beds. The alternative process foresees the direct sorption of hydrogens onto novel ZAO® non-evaporable getter (NEG) materials. The ZMS beds and the NEG beds are operated batchwise, but alternating schemes with an absorption (operation) phase and a desorption (regeneration) phase result in a pseudocontinuous process. Transient process simulations have been developed to evaluate the performance and impact of the different variants on downstream systems in the fuel cycle. In this contribution, these process models for the preconceptual design of both variants are presented and evaluated. For the reference designs proposed for each system, they have been found to satisfy the requirements of achieving 90% efficiency. This modeling then lays the foundation for optimization of the conventional process and outlines further research demand regarding the application of NEG materials needed to progress toward the concept design of the CPS process.