ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Luigi Candido, Ciro Alberghi, Pietro Arena, Fabio Moro, Simone Noce, Marco Utili, Massimo Zucchetti
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1197-1207
Research Article | doi.org/10.1080/15361055.2023.2173711
Articles are hosted by Taylor and Francis Online.
The accurate prediction of the tritium inventory and permeation fluxes in the water-cooled lithium-lead (WCLL) breeding blanket of the European DEMO fusion reactor is a key aspect for future thermonuclear power plant licensing. In this context, a tritium transport analysis is essential for the evaluation of the tritium retention in LiPb (15.7 at. % Li) and in the structural components and tritium permeation fluxes into the cooling water. This study presents a COMSOL Multiphysics model of a portion of the minimum functional unit of the outboard equatorial module of the WCLL. The neutronics analysis, performed with the MCNP Monte Carlo transport code, allows for the assessment of the tritium generation rate and the volumetric power deposition in the lithium-lead, both of which are used as an input for tritium transport modeling. Moreover, the buoyancy forces and the magnetohydrodynamic effect are also included. In order to take into account a pulsed operation for the DEMO reactor, a suitable algorithm was developed. The results show peak velocities in LiPb up to 24.1 mm with a maximum temperature at the first wall (FW) of 441°C. Most of the tritium is concentrated between the FW and the baffle plate, with partial pressures between 0.15 and 0.4 Pa considering Aiello’s correlation and in-house measurements of Sieverts’ constant on the HyPer-QuarCh II (HQ-II) device, whereas from 70 to 180 Pa adopting Reiter’s correlation. This has an impact also on the inventory in the Eurofer and in permeation fluxes to the water pipes. For Reiter’s correlation, the inventories in the Eurofer are about one order of magnitude lower with respect to LiPb, and the inventory in water is five orders of magnitude higher with respect to HQ-II and Aiello’s correlation.