Sufficient cooling of plasma-facing materials remains an outstanding challenge in the design of fusion reactor blankets in commercial power demonstration plants. Due to its chemical inertness and low neutron interaction cross section, pressurized helium is a candidate coolant fluid for such systems; however, helium has a small thermal mass compared to liquid coolants, potentially reducing heat removal performance. To address this need, a number of heat transfer enhancements have been proposed to improve the cooling efficiency of such components, thereby decreasing pumping power needs and improving overall plant efficiency.

Toward this end, a helium flow loop experiment (HFLE) has been designed and commissioned to test advanced passive heat transfer enhancements in unit-cell test sections, providing necessary data for model validation and subsequent system design. The HFLE is designed to provide flow of pressurized (up to 4 MPa) helium at flow rates up to 80 g/s, enabling heat transfer and pressure drop measurements in test pieces at Reynolds numbers in excess of 180 000. To explore the effects of novel and complex heat transfer enhancements, test sections are produced via additive manufacturing, providing geometries not typically obtainable by conventional machining.

In this work, we present results from HFLE commissioning and the initial thermal-hydraulic tests of an additively manufactured rifled-rib test section. Results are compared to smooth pipe correlations, and plans are described for future HFLE measurements. These preliminary experiments indicate the utility of the HFLE for heat transfer enhancement testing and simulation validation activities.