ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
Michael L. Lanahan, Said I. Abdel-Khalik, Minami Yoda
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1071-1081
Research Article | doi.org/10.1080/15361055.2023.2177065
Articles are hosted by Taylor and Francis Online.
Given the lack of fusion-relevant component test facilities, current estimates of the thermo-fluid performance of plasma-facing components are based for the most part on numerical simulations. A major source of uncertainty in these simulations is the semiempirical turbulence (closure) models for the Reynolds stresses appearing in the governing Reynolds-averaged Navier-Stokes equations, which involve a set of constants that depend upon the flow.
The objective of this study is to evaluate Bayesian parameter estimation of turbulence closure constants in ANSYS Fluent to model heat transfer in impinging jets. The Bayesian statistical calibration produces a probability distribution for these constants from experimental data; the maximum a posteriori estimates are then taken to be the calibrated constants, or parameters. The turbulence model constants are calibrated using an experimental study of a submerged jet of air impinging on a flat heated surface at Reynolds numbers Re = O(104) and impingement distance in jet diameters H/d = 2. Numerical predictions using the calibrated model parameters are then compared with those generated using the default constants. Predictions obtained with model parameters calibrated on datasets of two different sizes are compared to evaluate the effect of the number of calibration samples. Finally, the extrapolative ability of the calibrated model is examined by predictions at a Re beyond the calibration values.