ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
M. C. Thompson, B. Levitt, B. A. Nelson, U. Shumlak
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1051-1058
Research Article | doi.org/10.1080/15361055.2023.2209131
Articles are hosted by Taylor and Francis Online.
The sheared-flow-stabilized Z-pinch concept is on a path to commercialization at Zap Energy. Recent experiments on the Fusion Z-pinch Experiment (FuZE) device corroborate expected plasma stability and thermonuclear fusion reaction rates. Experimental campaigns are underway to increase the pinch current, the stable plasma duration, and the DD fusion neutron production. The next-generation device FuZE-Q is currently undergoing commissioning and will begin operation at current levels where scientific breakeven-equivalent conditions are expected in the near future. The Z-pinch configuration offers the promise of a compact fusion device owing to its simple geometry, unity beta, and absence of external magnetic field coils.
In addition to a robust experimental program pushing plasma performance toward breakeven conditions, Zap Energy has parallel programs developing power handling systems suitable for future power plants. Technologies under development include high-average-power repetitive pulsed power, high-duty-cycle cathodes, and liquid-metal wall systems. High-level features of the conceptual power plant core design are elaborated and compared with other approaches to fusion energy.