ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Son N. Quang, Jonathan Wing, Nicholas R. Brown, G. Ivan Maldonado
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 973-988
Research Article | doi.org/10.1080/15361055.2023.2185043
Articles are hosted by Taylor and Francis Online.
This study describes an application of the SERPENT 2 code with the TENDL-2017 nuclear data library and the latest available model features of the Fusion Energy System Studies–Fusion Nuclear Science Facility (FNSF), to evaluate the activation of components after shutdown at 1, 10, and 100 years, assuming a plant lifetime of 8.5 full-power years. The primary parameters evaluated include the specific activity, decay heat, and waste disposal rating (WDR). The specific activity and decay heat are calculated with SERPENT 2 using a 360-deg model of the FNSF, while the WDR is calculated and classified based on the waste disposal limits established by the U.S. Nuclear Regulatory Commission under 10 CFR 61.55 as well as by using the Fetter approach.
A python-based script developed for a previous high-level waste classification and analysis study was implemented and adapted to this research to calculate the WDR by comparing nuclide concentrations to the values established in 10 CFR 61.55 to generate a waste classification for each component surveyed. As only three short-lived isotopes have limitations for classifications beyond Class A, of which only 63Ni is present in appreciable quantities, there is a limit to the amount that short-lived isotopes contribute to the most significant waste analyzed here. In most cases, a handful of long-lived isotopes can be problematic, such as 59Ni and 94Nb, for example, which are solely responsible for multiple Class C classifications.
The results herein reported heavily depend on the specific materials and mass/volume fractions in the specific model used in this study, which has changed and evolved since the inception of the FNSF concept and past studies. Therefore, the more significant contributions of this study may be the development of a modeling and simulation toolkit and a strategy to perform these calculations, so to help evaluate and optimize future fusion facilities.