ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Son N. Quang, Jonathan Wing, Nicholas R. Brown, G. Ivan Maldonado
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 973-988
Research Article | doi.org/10.1080/15361055.2023.2185043
Articles are hosted by Taylor and Francis Online.
This study describes an application of the SERPENT 2 code with the TENDL-2017 nuclear data library and the latest available model features of the Fusion Energy System Studies–Fusion Nuclear Science Facility (FNSF), to evaluate the activation of components after shutdown at 1, 10, and 100 years, assuming a plant lifetime of 8.5 full-power years. The primary parameters evaluated include the specific activity, decay heat, and waste disposal rating (WDR). The specific activity and decay heat are calculated with SERPENT 2 using a 360-deg model of the FNSF, while the WDR is calculated and classified based on the waste disposal limits established by the U.S. Nuclear Regulatory Commission under 10 CFR 61.55 as well as by using the Fetter approach.
A python-based script developed for a previous high-level waste classification and analysis study was implemented and adapted to this research to calculate the WDR by comparing nuclide concentrations to the values established in 10 CFR 61.55 to generate a waste classification for each component surveyed. As only three short-lived isotopes have limitations for classifications beyond Class A, of which only 63Ni is present in appreciable quantities, there is a limit to the amount that short-lived isotopes contribute to the most significant waste analyzed here. In most cases, a handful of long-lived isotopes can be problematic, such as 59Ni and 94Nb, for example, which are solely responsible for multiple Class C classifications.
The results herein reported heavily depend on the specific materials and mass/volume fractions in the specific model used in this study, which has changed and evolved since the inception of the FNSF concept and past studies. Therefore, the more significant contributions of this study may be the development of a modeling and simulation toolkit and a strategy to perform these calculations, so to help evaluate and optimize future fusion facilities.