ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
SMR simulator development is focus of North Carolina grant
The North Carolina Collaboratory, a research funding agency established by the North Carolina General Assembly to partner with academic institutions and government entities, has awarded a grant to North Carolina State University and GE Hitachi Nuclear Energy (GEH) for research into small modular reactors. The funded research project, “Academic Boiling Water–Small Modular Reactor (BW-SMR) Simulator for Research, Development, and Educational Purposes,” focuses on the development of a digital-based simulator for GEH’s BWRX-300, a Gen III+ light water SMR.
Laila El-Guebaly
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 919-931
Research Article | doi.org/10.1080/15361055.2022.2151820
Articles are hosted by Taylor and Francis Online.
In recent decades, fusion designers have become increasingly aware of the large amount of mildly radioactive materials that fusion generates in comparison to their fission counterpart, which is a problem that was overlooked in early fusion studies. This radioactive waste (radwaste) problem could influence public acceptability of fusion and will certainly become a significant issue in the immediate future as fusion moves forward toward commercialization. There is a growing appreciation to revisit the 1960s decision that relegated all radwaste to the back end as only a disposal issue. In light of the challenges facing fusion in the 21st century, a thoughtful alternate approach that promotes recycling and clearance of all fusion radioactive materials is considered to stress the environmental value of fusion in utilizing natural assets efficiently, assert the fundamental premise of fusion as a nuclear energy source with minimal environmental impact, and gain public acceptability for fusion. This strategy helps to reach the common goal of several organizations that recommend recycling and clearing as much radioactive material as practically possible to reduce final radwaste burdens/risks and to maximize the use of natural resources. Recognizing the relatively early stages of commercial fusion maturity, lessons learned and worldwide industrial experiences from other nuclear fields are valuable resources for the fusion recycling/clearance approach. To make such an approach a reality, the global fusion program should be set up to accommodate the new strategy at an early stage of fusion designs and address the identified issues and needs with directed research and development programs. The absence of official fusion regulatory guidelines has been recognized for several decades, but some progress has been made in recent years, recognizing that fusion is different from fission and has a different radionuclide profile.