ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Laila El-Guebaly
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 919-931
Research Article | doi.org/10.1080/15361055.2022.2151820
Articles are hosted by Taylor and Francis Online.
In recent decades, fusion designers have become increasingly aware of the large amount of mildly radioactive materials that fusion generates in comparison to their fission counterpart, which is a problem that was overlooked in early fusion studies. This radioactive waste (radwaste) problem could influence public acceptability of fusion and will certainly become a significant issue in the immediate future as fusion moves forward toward commercialization. There is a growing appreciation to revisit the 1960s decision that relegated all radwaste to the back end as only a disposal issue. In light of the challenges facing fusion in the 21st century, a thoughtful alternate approach that promotes recycling and clearance of all fusion radioactive materials is considered to stress the environmental value of fusion in utilizing natural assets efficiently, assert the fundamental premise of fusion as a nuclear energy source with minimal environmental impact, and gain public acceptability for fusion. This strategy helps to reach the common goal of several organizations that recommend recycling and clearing as much radioactive material as practically possible to reduce final radwaste burdens/risks and to maximize the use of natural resources. Recognizing the relatively early stages of commercial fusion maturity, lessons learned and worldwide industrial experiences from other nuclear fields are valuable resources for the fusion recycling/clearance approach. To make such an approach a reality, the global fusion program should be set up to accommodate the new strategy at an early stage of fusion designs and address the identified issues and needs with directed research and development programs. The absence of official fusion regulatory guidelines has been recognized for several decades, but some progress has been made in recent years, recognizing that fusion is different from fission and has a different radionuclide profile.