Recent experiments conducted on hazardous materials using the Precision High Energy-density Liner Implosion eXperiment (PHELIX) required development of a new containment system for the apparatus. Unlike many containment systems, the PHELIX containment system includes a cylindrical imploding aluminum liner, which is driven via magnetic fields to approximate velocities of 1.4 km/s before impacting a target. The complex design attributes and monolithic geometry of the liner have been driven by both simulations and empirical measurements. The contents of this paper cover the design considerations and requirements for the liner, the efforts made in fabricating the component, and steps taken to verify performance both as the dynamic driver of the experiment and as a containment system component.