ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Nikolaus Christiansen, Derek Schmidt, John Martinez, Valerie Fatherley, Justin Jorgenson, Noah Birge, Verena Geppert-Kleinrath, Carl Wilde
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 907-913
Research Article | doi.org/10.1080/15361055.2023.2210298
Articles are hosted by Taylor and Francis Online.
The neutron pinhole array, used to collect neutron burn, X-ray, and more recently, gamma emission images, has been in use at the National Ignition Facility since 2011. Since then, there has been the ever-continuing challenge of meeting tighter alignment and resolution requirements. Part of that challenge is being able to accurately characterize the as-built variances from the nominal design associated with the manufacturing and assembly of the pinhole array. To overcome this specific challenge, multiple processes are taken to obtain high-precision profiles of the various features of each pinhole array. This paper highlights the processes used as well as the steps taken to compile the significant amount of data and turn it into an accurate as-built reconstructed model of the NIS1-U–assembled pinhole array.