ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
In an international industry, regulators cross the border too
Since nuclear physics works the same in Ontario as it does in Tennessee, the industry has been trying to create a reactor that can be deployed on both sides of the border. Now, the Nuclear Regulatory Commission and the Canadian Nuclear Safety Commission have decided that some of their rulings can cross the border too.
M. G. DeVincenzi, A. Nikroo, B. Kozioziemski, J. Hackbarth, T. Braun, I. Chavez, E. Piceno
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 884-894
Research Article | doi.org/10.1080/15361055.2023.2175600
Articles are hosted by Taylor and Francis Online.
Recent deuterium-tritium (D-T)–layered implosion experiments at the National Ignition Facility have achieved a burning plasma and >1-MJ neutron yield. A series of repeat experiments have shown that the degree of performance is very likely dependent on capsule quality, including the quantity of what are collectively termed “high- Z particles.” These particles are detected on a custom-built radiography system, known as the Sagometer, during the final target qualification process. The term particles is misleading, as the source of these nonuniformities in the capsule images is uncertain; the term detection will be used instead. An increased number of D-T targets have been rejected at the final stages of production due to Sagometer detections.
Late detections are deleterious in terms of loss of production parts, effort, and overall operating efficiency. In response, we undertook an effort to determine the origin of these detections and to ultimately mitigate target losses caused by them. Through careful testing and analysis, we have determined neither insufficient production cleanliness nor hohlraum shedding is responsible for the detections on the capsule. We determined that the detections are inherent to the capsule and have made efforts to use the Zeiss Xradia to identify them earlier in the production process. While testing revealed the Xradia is not currently sufficient for identifying such particles using radiography images, we continue to look to other forms of metrology to down select the capsules early in the process.