Boron-doped nanowires have promising applications in inertial confinement fusion. Developing an effective fabrication method for boron-doped nanowires is necessary for further investigation into their use as targets. In this paper, we examine a fabrication method that maximizes wire length and boron composition while minimizing fabrication time. Two boron-containing nanoparticles—pure boron and boron nitride nanoparticles—were used as dopants for two possible wire materials: General Atomics–Carbon-Hydrogen (GA-CH) aerogel and carbon-hydrogen (CH) polymer. Anodic aluminum oxide (AAO) templates were used to imprint the materials with nanowires. This study used a five-step fabrication process: (1) synthesis of boron or boron nitride–doped CH material (polymer and aerogel), (2) heat pressing of the doped material into the AAO template, (3) etching away the AAO template, (4) solvent exchanging, and (5) drying. Various boron compositions (in atomic percent), heat pressing temperatures, and heat pressing injection depths were tested to determine the best conditions for wire fabrication. Data collected using scanning electron microscopy and energy dispersive spectroscopy mapping demonstrated that the most successful wires were the boron nitride–doped CH polymer nanowires (7.33 at. % boron) at an injection depth of 0.3960 mm. However, the aerogel material has a greater ability than polymer to disperse the boron nitride nanoparticles, making it more ideal for nanowires. Although the boron nitride–doped aerogel nanowires were unsuccessful, the findings of this study provide promising guidance for future aerogel nanowire fabrication.