ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Swanee J. Shin, Leonardus B. Bayu Aji, Alison M. Engwall, John H. Bae, Gregory V. Taylor, Paul B. Mirkarimi, Chantel Aracne-Ruddle, Jack Nguyen, Casey W. N. Kong, Sergei O. Kucheyev
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 841-852
Research Article | doi.org/10.1080/15361055.2023.2194238
Articles are hosted by Taylor and Francis Online.
Boron carbide is an attractive ablator for next-generation inertial confinement fusion (ICF) targets. Here we describe several aspects of our ongoing systematic studies of the deposition and processing of B4C coatings for ICF targets. We show that residual compressive stress in films can be reduced and the deposition rate increased by N-doping. We also demonstrate successful Si substrate etching and surface polishing and discuss remaining challenges and offer potential solutions to the buildup of particulates in the deposition chamber during prolonged coating runs, control of nodular growth defects, and lateral nonuniformity of film properties for deposition conditions with relatively low target-to-substrate distances.