ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Swanee J. Shin, Leonardus B. Bayu Aji, Alison M. Engwall, John H. Bae, Gregory V. Taylor, Paul B. Mirkarimi, Chantel Aracne-Ruddle, Jack Nguyen, Casey W. N. Kong, Sergei O. Kucheyev
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 841-852
Research Article | doi.org/10.1080/15361055.2023.2194238
Articles are hosted by Taylor and Francis Online.
Boron carbide is an attractive ablator for next-generation inertial confinement fusion (ICF) targets. Here we describe several aspects of our ongoing systematic studies of the deposition and processing of B4C coatings for ICF targets. We show that residual compressive stress in films can be reduced and the deposition rate increased by N-doping. We also demonstrate successful Si substrate etching and surface polishing and discuss remaining challenges and offer potential solutions to the buildup of particulates in the deposition chamber during prolonged coating runs, control of nodular growth defects, and lateral nonuniformity of film properties for deposition conditions with relatively low target-to-substrate distances.