ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. O. Kucheyev, S. J. Shin, L. B. Bayu Aji, J. H. Bae, A. M. Engwall, G. V. Taylor
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 823-840
Research Article | doi.org/10.1080/15361055.2023.2184667
Articles are hosted by Taylor and Francis Online.
Magnetron sputter deposition is an enabling technology for laser target fabrication. Solutions are readily available for the deposition of most sub-micron-thick elemental films on planar substrates. However, major challenges still remain for the development of robust deposition processes in regimes of ultrathick (over μm) coatings and nonplanar substrates. These challenging deposition regimes are directly relevant to laser target applications, including both sphero-cylindrical hohlraums and spherical ablators for inertial confinement fusion (ICF) targets. Understanding underlying physical mechanisms for a specific material system is crucial for process development, given the overall complexity of the deposition process, its nonlinear dependence on deposition parameters, and a very large process space, often precluding conventional process optimization approaches. Here, we describe our approach to developing new deposition processes and give practical advice with examples of new results from our ongoing studies of glassy boron carbide ceramics for next-generation ICF ablators and nonequilibrium gold-tantalum alloys for hohlraums for magnetized ICF schemes. Emphasis is given to two major challenges of ultrathick coatings related to achieving process stability and reducing residual stress.