ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
S. O. Kucheyev, S. J. Shin, L. B. Bayu Aji, J. H. Bae, A. M. Engwall, G. V. Taylor
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 823-840
Research Article | doi.org/10.1080/15361055.2023.2184667
Articles are hosted by Taylor and Francis Online.
Magnetron sputter deposition is an enabling technology for laser target fabrication. Solutions are readily available for the deposition of most sub-micron-thick elemental films on planar substrates. However, major challenges still remain for the development of robust deposition processes in regimes of ultrathick (over μm) coatings and nonplanar substrates. These challenging deposition regimes are directly relevant to laser target applications, including both sphero-cylindrical hohlraums and spherical ablators for inertial confinement fusion (ICF) targets. Understanding underlying physical mechanisms for a specific material system is crucial for process development, given the overall complexity of the deposition process, its nonlinear dependence on deposition parameters, and a very large process space, often precluding conventional process optimization approaches. Here, we describe our approach to developing new deposition processes and give practical advice with examples of new results from our ongoing studies of glassy boron carbide ceramics for next-generation ICF ablators and nonequilibrium gold-tantalum alloys for hohlraums for magnetized ICF schemes. Emphasis is given to two major challenges of ultrathick coatings related to achieving process stability and reducing residual stress.