ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
M. Ratledge, E. Del Rio, Brian Watson, N. Said, N. Rice, M. Farrell, E. Dewald, A. Nikroo, D. Clark
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 801-808
Research Article | doi.org/10.1080/15361055.2023.2210705
Articles are hosted by Taylor and Francis Online.
In inertial confinement fusion target design, the shape discrepancy between the cylindrical hohlraum and the spherical capsule creates a low mode asymmetry in the implosion. One way to correct such asymmetry is to shim the target capsule surface with extra mass in specific locations following a three-dimensional P4 Legendre mode. Previously, the desired surface pattern was precision machined out of the capsule. The resulting 2DConA experiments that investigated the implosion’s shape demonstrated the shimming method’s success. However, machining leaves large defects on the capsule surface that will degrade neutron yield in a DT implosion. An alternative shimming approach is to grow the pattern on the capsule surface using a glow discharge polymerization coating process in a stencil lithography application. In this paper, we discuss the fabrication, characterization, and challenges of making shimmed target capsules with this new method.