ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Matthew Quinn, David Orozco, Kurt Boehm, Brian Sammuli, Wendi Sweet
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 791-800
Research Article | doi.org/10.1080/15361055.2023.2204201
Articles are hosted by Taylor and Francis Online.
The success of inertial confinement fusion experiments hinges on the production of perfectly round spherical capsules placed at the center of an implosion. Some of the most common ablator materials are grown on poly(alpha-methylstyrene) (PAMS) mandrels. Human operator–based optical inspection of individual PAMS mandrels followed by a selection decision, is a labor-intensive process that suffers from operator dependence. General Atomics has developed a robotic system to handle and image these delicate PAMS mandrels and has implemented an autonomous method for evaluating shell quality. The selection criteria of acceptable mandrels has been standardized by employing visual defect characterization tools and associated machine learning algorithms. This work discusses the mechanical upgrades made to the robot cell for handling shells, the suite of software tools developed for a more complete evaluation of individual shells, and correlating defect statistics from entire batches to production data from the PAMS fabrication process parameters.