ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Matthew Quinn, David Orozco, Kurt Boehm, Brian Sammuli, Wendi Sweet
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 791-800
Research Article | doi.org/10.1080/15361055.2023.2204201
Articles are hosted by Taylor and Francis Online.
The success of inertial confinement fusion experiments hinges on the production of perfectly round spherical capsules placed at the center of an implosion. Some of the most common ablator materials are grown on poly(alpha-methylstyrene) (PAMS) mandrels. Human operator–based optical inspection of individual PAMS mandrels followed by a selection decision, is a labor-intensive process that suffers from operator dependence. General Atomics has developed a robotic system to handle and image these delicate PAMS mandrels and has implemented an autonomous method for evaluating shell quality. The selection criteria of acceptable mandrels has been standardized by employing visual defect characterization tools and associated machine learning algorithms. This work discusses the mechanical upgrades made to the robot cell for handling shells, the suite of software tools developed for a more complete evaluation of individual shells, and correlating defect statistics from entire batches to production data from the PAMS fabrication process parameters.