ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
M. Aggleton, S. Bhandarkar, A. Nikroo
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 786-790
Research Article | doi.org/10.1080/15361055.2023.2194240
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion experiments require a fuel filled target. At the National Ignition Facility (NIF), these targets are filled through a capsule fill tube assembly (CFTA). While fabricating these assemblies, it is possible to plug the fill tube with glue, which would render the CFTA and eventual target unusable. Historically, this plugging was first detectable in a finished target after considerable resources had been expended. This paper presents a method for not only detecting a plug in the fill tube before the CFTA is assembled into a target, but also characterizing gas flow through the fill tube, which can help NIF operations prepare to expend each target.