ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Joachim E. Geiger, Arthur Weller, Michael C. Zarnstorff, Carolin Nührenberg, Andreas Horst Franz Werner, Yaroslav I. Kolesnichenko, W7-AS Team, Neutral Beam Injection Group
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 13-23
Technical Paper | Stellarators | doi.org/10.13182/FST04-A536
Articles are hosted by Taylor and Francis Online.
One of the major goals for Wendelstein 7-AS (W7-AS) was the testing of the theoretical basis for the optimized configuration of Wendelstein 7-X (W7-X), currently under construction in Greifswald, Germany. In the last experimental campaign of W7-AS, volume-averaged values >3% have been achieved. The underlying experimental changes leading to these results are briefly reviewed. The equilibrium characteristics expected from magnetohydrodynamic (MHD) theory are modeled in a simplified picture and compared with three-dimensional equilibrium calculations. A wide range of parameters has been covered in the experiments with and without net toroidal currents. Experimental data are compared with free-boundary equilibrium calculations and exhibit good agreement. The high- equilibria usually showed only small MHD activity. The most prominent activities are low-frequency pressure-driven modes connected with low-order rationals also expected from numerical calculations using the CAS3D code, and Alfvén modes driven by energetic particles from the tangential neutral beam injection. Comparison of experimentally measured frequencies and mode structures from soft-X-ray tomography with theoretical predictions also shows the improving understanding of these modes in stellarators. The agreement of experiment and theory gives confidence in the predictions for W7-X.