ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
A. V. Zhirkin, V. P. Budaev, A. V. Dedov, A. A. Glebova, A. O. Goltsev, A. T. Komov, B. V. Kuteev
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 703-722
Research Article | doi.org/10.1080/15361055.2023.2178869
Articles are hosted by Taylor and Francis Online.
The modern challenges of nuclear energy are the replenishment of dwindling reserves of nuclear fuel and the development of a closed nuclear fuel cycle while complying with strict radiation safety requirements. A fusion neutron source has unique capabilities to solve these problems. The preliminary results of a neutronic analysis of the FNS-C fusion-fission hybrid neutron source with a thorium-uranium aqueous blanket by the Monte Carlo method computer simulation, using the MCNP-4 code with the ENDF/B-VII cross-section library, gives satisfactory results for the study of the possibility of creating a compact source of fusion neutrons based on a small spherical tokamak for commercial use.
The obtained results show that the FNS-C hybrid blanket generates enough tritium to fully ensure the uninterrupted operation of the FNS-C throughout the year. The reproduction coefficient of 233U is 1.027 at a consumption of 1304 kg/year of the fissile material in the aqueous blanket containing 232Th enriched to 1.47% 233U. The FNS-C is operated with an effective neutron multiplication factor keff ~ 0.99 with reactivity ρ = –0.006249 in the presence of delayed neutrons, which corresponds to the safest state of the core of thermal neutron fission reactors. The thermal power of the FNS-C at keff ~ 0.99 is ~3 GW, which is comparable to the thermal power of fission reactors. This indicates the potential possibility of creating a safe thorium-uranium breeder power reactor based on a fusion neutron source. The results of the study were obtained for the simplified approximate geometrical FNS-C model. To confirm the preliminary results, it is necessary to develop a more accurate calculation model of the FNS-C machine.