ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
SMR simulator development is focus of North Carolina grant
The North Carolina Collaboratory, a research funding agency established by the North Carolina General Assembly to partner with academic institutions and government entities, has awarded a grant to North Carolina State University and GE Hitachi Nuclear Energy (GEH) for research into small modular reactors. The funded research project, “Academic Boiling Water–Small Modular Reactor (BW-SMR) Simulator for Research, Development, and Educational Purposes,” focuses on the development of a digital-based simulator for GEH’s BWRX-300, a Gen III+ light water SMR.
Hemang S. Agravat, Samiran S. Mukherjee, Vishal Gupta, Paresh Panchal, Pratik Nayak, Jyoti Shankar Mishra, Ranjana Gangradey
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 683-702
Research Article | doi.org/10.1080/15361055.2023.2178252
Articles are hosted by Taylor and Francis Online.
To create high and ultra-high vacuum environments in large-size chambers for applications in space research, nuclear fusion, accelerators, etc., vacuum pumps with fast pumping speeds are essentially required. To cater to this need, one promising solution is the cryopump, which offers efficiency, a low cost, and applicability. The Institute for Plasma Research is working to develop large-size cryopumps and to develop performance testing and design validation for such cryopumps.
In this paper, the Large Cryopumping Test Facility (LCTF) is conceptualized. It houses a large cryopump designed to achieve the pumping speed of ~50 000 L/s for nitrogen gas. The LCTF includes a dome chamber to make the pumping speed measurements per the American Vacuum Society standard and a hybrid cryopump with a 1250-mm opening diameter. The present work illustrates the configuration of the cryopump and its subsystems. The pump will be cooled by liquid nitrogen (LN2) to an 80-K temperature and a Gifford-McMahon cryocooler for up to a 10-K temperature. Here, a new geometrical concept for the pump is considered where the annulus LN2 bath cools the array panels and baffles and also acts as a radiation shield to protect the 10-K cryopanels from radiation heat load. A detailed investigation of the thermal and structural analysis for the LCTF is discussed to validate the performance of the pump and the robustness of the system.