ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
L. M. Garrison, Y. Katoh, T. Hinoki, N. Hashimoto, J. R. Echols, J. W. Geringer, N. C. Reid, J. P. Allain, B. Cheng, D. Dorow-Gerspach, V. Ganesh, H. Gietl, S. A. Humphry-Baker, E. Lang, I. McCue, J. Riesch, L. L. Snead, G. D. W. Smith, J. R. Trelewicz, Y. Yang, S. J. Zinkle
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 662-670
Research Article | doi.org/10.1080/15361055.2023.2176687
Articles are hosted by Taylor and Francis Online.
The plasma-facing components (PFCs) of future fusion reactors will have intricate structures and require multiple materials because no one material can simultaneously satisfy all the requirements of the component. The dissimilar material joints in PFCs must withstand extreme thermal and stress gradients under neutron irradiation. The Fusion Research Oriented to Neutron Irradiation and Tritium Behavior at Material Interfaces (FRONTIER) U.S.-Japan collaboration seeks to explore and explain the behavior of internal solid interfaces in PFCs under neutron irradiation. The first step of the collaboration was to identify the leading PFCs that should be studied further and prepare them for the next step, which will include neutron irradiation. Different strategies for material development are being pursued worldwide to produce robust PFCs. Here, an overview is presented of some of the most promising materials in the areas of copper alloys, tungsten-copper composites, tungsten-steel composites, additively manufactured tungsten, particle-reinforced tungsten, and tungsten and SiC fiber composites. Each material’s fabrication and benefits are described, and some discussion of remaining questions is given.