ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Masayuki Tokitani, Yukinori Hamaji, Yutaka Hiraoka, Yuki Hayashi, Suguru Masuzaki, Hitoshi Tamura, Hiroyuki Noto, Teruya Tanaka, Tatsuya Tsuneyoshi, Yoshiyuki Tsuji, Gen Motojima, Hiromi Hayashi, Takanori Murase, Takeo Muroga, Akio Sagara, Tomohiro Morisaki
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 651-661
Research Article | doi.org/10.1080/15361055.2023.2176184
Articles are hosted by Taylor and Francis Online.
A novel method, called Advanced Multi-Step Brazing, was developed to fabricate a new type of divertor heat removal component with W armor and an oxide-dispersion-strengthened copper (GlidCop®) heat sink in the initial phase of our work. Later, a new type of divertor heat removal component, which has a rectangular-shaped cooling channel with a V-shaped staggered-rib structure in the GlidCop heat sink, was developed. This new component showed an extremely high heat removal capability during a ~30 MW/m2 steady-state heat loading condition in our previous work. In this work, the new component was installed in the divertor strike position of the Large Helical Device and exposed to neutral beam injection–heated plasma discharges with 1180 shots (~8000 s) in total. Though submillimeter-scale damage, such as unipolar arc trails and microscale cracks, was identified on the W surface, the extremely high heat removal capability did not show any sign of degradation over the experimental period. On the other hand, remarkable sputtering erosion and redeposition phenomena, due to the strong influx of the divertor plasma, was confirmed on the W armor.