ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
J. M. Blatz, P. Barrows, T. Gribb, D. M. Cech, G. Becerra, T. Kile, C. M. Jacobson, L. Jacobson, J. Giffey, R. Radel
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 617-629
Research Article | doi.org/10.1080/15361055.2023.2167458
Articles are hosted by Taylor and Francis Online.
There is a known demand for a fusion prototypic neutron source capable of emulating the neutron-induced damage caused by fusion. If no such source is developed in a timely and economical manner, the use of fusion as a source of energy will be hindered by material selection and qualification. Presented here is one possible path toward the development of a fusion prototypic neutron source by enhancing an operational neutron generator platform with so-called plasma windows. The use of plasma windows addresses a weakness in the current design by improving the pressure differential between acceleration and the target regions. This improvement, combined with the use of multiple beamlines, represents the possibility of dramatically increasing the fusion neutron flux capabilities of such a system.