ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Stephan M. Senn, Steven J. Pemberton, Per F. Peterson
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 573-582
Technical Paper | doi.org/10.13182/FST04-A532
Articles are hosted by Taylor and Francis Online.
Oscillating thick-liquid jets have been proposed to create pockets to provide neutron shielding and droplet clearing at high repetition rate for heavy-ion inertial fusion energy. A procedure is introduced to compute nonsinusoidal nozzle oscillation functions based on the desired pocket geometry at the time of target ignition. The primary goals for creating optimum pocket geometries are discussed, such as complete pocket closing at time of target ignition, avoidance of liquid-liquid collisions that could lead to jetting into the target region, maintenance of a uniform void distribution to avoid the propagation of strong shocks toward the injection nozzles, and consideration of mechanical limitations on the maximum nozzle acceleration. The equation of motion for a horizontally translating nozzle is derived that generates the desired pocket shape. Numerical results are compared to a sinusoidal oscillation function. The same procedure had been applied to a rotating nozzle.